鸿 网 互 联 www.68idc.cn

JavaScript中关于防止递归栈溢出错误的解析

来源:互联网 作者:佚名 时间:2018-03-07 10:42
真是大神级的人物, 必须膜拜. 虚心学习 尾递归 函数调用自身,称为递归。如果尾调用自身,就称为尾递归。 递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以

真是大神级的人物, 必须膜拜. 虚心学习

尾递归

函数调用自身,称为递归。如果尾调用自身,就称为尾递归。

递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。

例子1

function factorial(n) {
  if (n === 1) return 1;  return n * factorial(n - 1);
}

factorial(5) // 120

上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n) 。

如果改写成尾递归,只保留一个调用记录,复杂度 O(1)

function factorial(n, total) {
  if (n === 1) return total;  return factorial(n - 1, n * total);
}

factorial(5, 1) // 120

例子2

还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。

非尾递归的 Fibonacci 数列实现如下。

function Fibonacci (n) {
  if ( n <= 1 ) {return 1};  return Fibonacci(n - 1) + Fibonacci(n - 2);
}

Fibonacci(10) // 89Fibonacci(100) // 堆栈溢出, 亲测页面直接卡死, cpu: i7-4720Fibonacci(500) // 堆栈溢出

优化后

function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
  if( n <= 1 ) {return ac2};  return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}

Fibonacci2(100) // 573147844013817200000Fibonacci2(1000) // 7.0330367711422765e+208 非一般的速度Fibonacci2(10000) // Infinity

尾递归优化

尾递归优化只在严格模式下生效,那么正常模式下,或者那些不支持该功能的环境中,有没有办法也使用尾递归优化呢?回答是可以的,就是自己实现尾递归优化。

它的原理非常简单。尾递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。怎么做可以减少调用栈呢?就是采用“循环”换掉“递归”。

下面是一个正常的递归函数。

function sum(x, y) {
  if (y > 0) {    return sum(x + 1, y - 1);
  } else {    return x;
  }
}sum(1, 100000)// Uncaught RangeError: Maximum call stack size exceeded(…)

上面代码中,sum是一个递归函数,参数x是需要累加的值,参数y控制递归次数。一旦指定sum递归100000次,就会报错,提示超出调用栈的最大次数。

蹦床函数(trampoline)可以将递归执行转为循环执行。

function trampoline(f) {
  while (f && f instanceof Function) {
    f = f();
  }  return f;
}

上面就是蹦床函数的一个实现,它接受一个函数f作为参数。只要f执行后返回一个函数,就继续执行。注意,这里是返回一个函数,然后执行该函数,而不是函数里面调用函数,这样就避免了递归执行,从而就消除了调用栈过大的问题。

然后,要做的就是将原来的递归函数,改写为每一步返回另一个函数。

function sum(x, y) {
  if (y > 0) {    return sum.bind(null, x + 1, y - 1);
  } else {    return x;
  }
}

上面代码中,sum函数的每次执行,都会返回自身的另一个版本。

现在,使用蹦床函数执行sum,就不会发生调用栈溢出。

trampoline(sum(1, 100000))// 100001

蹦床函数并不是真正的尾递归优化,下面的实现才是

重点来了, 老铁们

function tco(f) {
  var value;  var active = false;  var accumulated = [];  return function accumulator() {
    accumulated.push(arguments);//每次将参数传入. 例如, 1 100000
    if (!active) {
      active = true;      
      while (accumulated.length) {//出循环条件, 当最后一次返回一个数字而不是一个函数时, accmulated已经被shift(), 所以出循环
        value = f.apply(this, accumulated.shift());//调用累加函数, 传入每次更改后的参数, 并执行
      }
      active = false;      
      return value;
    }
  };
}var sum = tco(function(x, y) {
  if (y > 0) {    
  return sum(x + 1, y - 1)//重点在这里, 每次递归返回真正函数其实还是accumulator函数
  }  
  else {    
  return x
  }
});

sum(1, 100000);//实际上现在sum函数就是accumulator函数// 100001

上面代码中,tco函数是尾递归优化的实现,它的奥妙就在于状态变量active。默认情况下,这个变量是不激活的。一旦进入尾递归优化的过程,这个变量就激活了。然后,每一轮递归sum返回的都是undefined,所以就避免了递归执行;而accumulated数组存放每一轮sum执行的参数,总是有值的,这就保证了accumulator函数内部的while循环总是会执行。这样就很巧妙地将“递归”改成了“循环”,而后一轮的参数会取代前一轮的参数,保证了调用栈只有一层。

以上就是JavaScript中关于防止递归栈溢出错误的解析的详细内容,更多请关注鸿网互联其它相关文章!

网友评论
<